166 research outputs found

    Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador

    Get PDF
    Samples taken from sedimentary archives indicate that fungal non-pollen palynomorphs (NPPs) can be used to provide information on forest cover, fire regime, and depositional environment in the eastern Andean flank montane forest of Ecuador. Within the 52 samples examined, 54 fungal NPP morphotypes are reported, of which 25 were found to be previously undescribed. Examination of fungal NPPs over a gradient of forest cover (2–64%) revealed three distinct assemblages: (1) low (Neurospora, IBB-16, HdV-201, OU-102, and OU-110 indicative of an open degraded landscape; (2) medium (8–32%) forest cover Cercophora-type 1, Xylariaceae, Rosellinia-type, Kretzschmaria deusta, Amphirosellinia, Sporormiella, and Glomus suggestive of a forested landscape disturbed by herbivores and soil erosion; and (3) high (32–63%) forest cover Anthostomella fuegiana, OU-5, OU-101, OU-108, and OU-120. Environmental variables for forest cover (forest pollen), available moisture (aquatic remains), regional fire regime (microcharcoal), and sediment composition (organic carbon) were found to explain ~40% of the variance in the fungal NPP data set. Fire was found to be the primary control on fungal NPP assemblage composition, with available moisture and sediment composition the next most important factors

    The impact of oxidation on spore and pollen chemistry

    Get PDF
    Sporomorphs (pollen and spores) have an outer wall composed of sporopollenin. Sporopollenin chemistry contains both a signature of ambient ultraviolet-B flux and taxonomic information, but it is currently unknown how sensitive this is to standard palynological processing techniques. Oxidation in particular is known to cause physical degradation to sporomorphs, and it is expected that this should have a concordant impact on sporopollenin chemistry. Here, we test this by experimentally oxidizing Lycopodium (clubmoss) spores using two common oxidation techniques: acetolysis and nitric acid. We also carry out acetolysis on eight angiosperm (flowering plant) taxa to test the generality of our results. Using Fourier Transform infrared (FTIR) spectroscopy, we find that acetolysis removes labile, non-fossilizable components of sporomorphs, but has a limited impact upon the chemistry of sporopollenin under normal processing durations. Nitric acid is more aggressive and does break down sporopollenin and reorganize its chemical structure, but when limited to short treatments (i.e. ≤10 min) at room temperature sporomorphs still contain most of the original chemical signal. These findings suggest that when used carefully oxidation does not adversely affect sporopollenin chemistry, and that palaeoclimatic and taxonomic signatures contained within the sporomorph wall are recoverable from standard palynological preparations

    Drivers of ecosystem and climate change in tropical West Africa over the past ∼540 000 years

    Get PDF
    A paucity of empirical non-marine data means that uncertainty surrounds the impact of climate change on terrestrial ecosystems in tropical regions beyond the last glacial period. The sedimentary fill of the Bosumtwi impact crater (Ghana) provides the longest continuous Quaternary terrestrial archive of environmental change in West Africa, spanning the last ∼1.08 million years. Here we explore the drivers of change in ecosystem and climate in tropical West Africa for the past ∼540 000 years using pollen analysis and the nitrogen isotope composition of bulk organic matter preserved in sediments from Lake Bosumtwi. Variations in grass pollen abundance (0−99%) indicate transitions between grassland and forest. Coeval variations in the nitrogen isotopic composition of organic matter indicate that intervals of grassland expansion coincided with minimum lake levels and low regional moisture availability. The observed changes responded to orbitally paced global climate variations on both glacial–interglacial and shorter timescales. Importantly, the magnitude of ecosystem change revealed by our data exceeds that previously determined from marine records, demonstrating for the first time the high sensitivity of tropical lowland ecosystems to Quaternary climate change

    Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

    Get PDF
    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0–17◦ S and 64–78◦ W. The study sites cover a mean annual temperature (MAT) gradient of 25 ◦ C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9% of the variance (λ1/λ2 =1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best performing model using conventional statistical methods was a WA (inverse) model (R2jack= 0.890; RMSEPjack= 2.404 ◦C, RMSEP – root mean jack squared error of prediction; mean biasjack = −0.017 ◦C; max biasjack = 4.665 ◦C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 ◦C, mean jack biasjack = 0.598 ◦C, and max biasjack = 3.158 ◦C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000–2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. −7 ± 2.5 ◦C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. −3 ± 3.4 ◦C). The error associated with both reconstructions is consistent with a constant temperature of 20 ◦C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only currently be deemed qualitative and requires more research before quantitative estimates can be generated with confidence. Increasing the number, and spread, of lakes in the calibration data set would enable the detection of smaller climate signals

    Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

    Get PDF
    Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate

    Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen

    Get PDF
    The uniform morphology of different species of Poaceae (grass) pollen means that identification to below family level using light microscopy is extremely challenging. Poor taxonomic resolution reduces recoverable information from the grass pollen record, for example, species diversity and environmental preferences cannot be extracted. Recent research suggests Fourier Transform Infra-red Spectroscopy (FTIR) can be used to identify pollen grains based on their chemical composition. Here, we present a study of twelve species from eight subfamilies of Poaceae, selected from across the phylogeny but from a relatively constrained geographical area (tropical West Africa) to assess the feasibility of using this chemical method for identification within the Poaceae family. We assess several spectral processing methods and use K-nearest neighbour (k-nn) analyses, with a leave-one-out cross-validation, to generate identification success rates at different taxonomic levels. We demonstrate we can identify grass pollen grains to subfamily level with an 80% success rate. Our success in identifying Poaceae to subfamily level using FTIR provides an opportunity to generate high taxonomic resolution datasets in research areas such as palaeoecology, forensics, and melissopalynology quickly and at a relatively low cost

    Proxy reconstruction of ultraviolet-B irradiance at the Earth’s surface, and its relationship with solar activity and ozone thickness

    Get PDF
    Solar ultraviolet-B (UV-B) irradiance that reaches the Earth’s surface acts as a biotic stressor and has the potential to modify ecological and environmental functioning. The challenges of reconstructing ultraviolent (UV) irradiance prior to the satellite era mean that there is uncertainty over long-term surface UV-B patterns, especially in relation to variations in solar activity over centennial and millennial timescales. Here, we reconstruct surface UV-B irradiance over the last 650 years using a novel UV-B proxy based on the chemical signature of pollen grains. We demonstrate a statistically significant positive relationship between the abundance of UV-B absorbing compounds in Pinus pollen and modelled solar UV-B irradiance. These results show that trends in surface UV-B follow the overall solar activity pattern over centennial timescales, and that variations in solar output are the dominant control on surface level UV-B flux, rather than solar modulated changes in ozone thickness. The Pinus biochemical response demonstrated here confirms the potential for solar activity driven surface UV-B variations to impact upon terrestrial biotas and environments over long timescales

    Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America

    Get PDF
    To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes
    • …
    corecore